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CH-8093 Zürich, Switzerland

and
∗Dept. of Physics, Indian Institute of Technology Madras,

Chennai 600036 India

E-mail: suresh@physics.iitm.ac.in

T. Jayaraman†

Dept. of Mathematics, Tata Inst. of Fundamental Research,

Mumbai India

E-mail: jayaram@imsc.res.in

Abstract: We systematically study and obtain the large-volume analogues of fractional

two-branes on resolutions of the orbifolds C3/Zn. We also study a generalisation of the

McKay correspondence proposed in hep-th/0504164 called the quantum McKay correspon-

dence by constructing duals to the fractional two-branes. Details are explicitly worked out

for two examples – the crepant resolutions of C3/Z3 and C3/Z5.

Keywords: D-branes, Conformal Field Models in String Theory.

∗Permanent Address.
†On leave from The Institute of Mathematical Sciences, Chennai.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep102006032/jhep102006032.pdf

mailto:bobby@theory.tifr.res.in
mailto:suresh@physics.iitm.ac.in
mailto:jayaram@imsc.res.in
http://jhep.sissa.it/stdsearch


J
H
E
P
1
0
(
2
0
0
6
)
0
3
2

Contents

1. Introduction 2

2. Background 3

2.1 Local Chern characters for sheaves on non-compact CY 4

2.2 Working with local Chern characters 5

3. Local Chern characters of the fractional two-branes: C3/Z3 6

3.1 General method 6

3.2 Toric geometry of C3/Z3 7

3.3 Triple Intersections 9

3.4 Fractional zero-branes 9

3.5 Fractional two-branes 10

3.6 Geometry of the fractional two-branes 11

3.7 A change of basis 12

4. The C3/Z5 example 13

4.1 Triple Intersections 14

4.2 Fractional zero-branes 15

4.3 Fractional two-branes — Type I 16

4.4 Fractional two-branes — Type II 18

4.5 A change of basis 19

5. Quantum McKay correspondence 19

5.1 C3/Z3 orbifold 20

5.2 C3/Z5 orbifold 20

6. Conclusion 22

A. Some details of the push-forward 23

B. Toric geometry - basics 23

B.1 The C3/Z3 orbifold 23

B.1.1 Resolution of the orbifold 24

B.2 The C3/Z5 orbifold 25

B.2.1 The resolution of C3/Z5 25

C. The R-sheaves for the Higgs branes 27

D. The Coulomb branes 28

– 1 –



J
H
E
P
1
0
(
2
0
0
6
)
0
3
2

1. Introduction

In an earlier paper [1], hereinafter referred to as I, we had initiated the study of fractional

2p-branes on non-compact orbifolds. These constructions were a logical extension of the

fractional zero-branes on orbifolds which have been well studied. While the actual con-

struction of the boundary states of these fractional 2p-branes in orbifolds had been done

earlier, there had been no detailed study of these branes as part of the general study of

B-type branes on the non-compact Calabi-Yau (CY) manifolds in whose Kähler moduli

space these orbifolds appeared as special points. In particular there had been no detailed

study of the large-volume analogues of these fractional 2p-branes, apart from some useful

preliminary remarks in [2].

While these fractional branes are of interest in their own right, in I we also showed two

interesting connections between these fractional branes and other constructions in the study

of B-type branes in the Landau-Ginzburg (LG) phase of compact CY manifolds. First we

showed that a particular class of fractional two-branes in the LG orbifold, on restriction

to the CY hypersurface, were indeed the same as the branes that had been constructed by

Ashok et al. [3] using the techniques of boundary fermions and matrix factorisation of the

world-sheet superpotential. This related the boundary fermion and matrix factorisation

construction to a more straightforward physical construction in terms of simple boundary

conditions on the fields of the LG model [4]. Second, we argued that the corresponding

conformal field theory boundary states at the LG point in the Kähler moduli space of the

CY were in fact the so-called permutation branes [5] of the Gepner construction of the

bulk world-sheet conformal field theory. Our argument was further strengthened by the

complete computation presented by [6] for these permutation branes(see also [7]).

However the construction of the large-volume analogues of the fractional two-branes in

I had relied heavily on some physical arguments. In particular, the coherent sheaves that

corresponded to these fractional two-branes appeared as the cohomology of exact sequences

that had really had no proper mathematical meaning, as the assignment of fractional 2-

brane charges was entirely ad hoc. By independent cohomology and K-theory arguments

we had however established that the large-volume analogues of the fractional two-branes

were entirely sensible from the point of view of sheaves that were associated to the full non-

compact CY manifold. In particular in the full non-compact space the fractional charge

had an entirely sensible interpretation as an integer charge in a new basis.1

In this paper we re-examine these questions from the point of view of toric geometry.

The toric description, as we will see, is particularly useful in the description of sheaves

on the full non-compact CY. We will show that the charges of the large-volume analogues

of the fractional two-branes, in terms of the Chern characters of these objects, can be

determined consistently in the framework of toric geometry. We will also see that this

determination shows the heuristic sequences that we wrote down for these objects are also

meaningful in a sense that we will explain.

Another aspect of these fractional two-branes that we had studied briefly in I was

their relation to the quantum McKay correspondence. One way of stating the classical

1The appearance of fractional charges was already noted in [8]
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McKay correspondence is as a relation between the sheaves corresponding to the fractional

zero-branes and a dual set of bundles, the so-called tautological bundles, on the full non-

compact CY [9 – 11]. For fractional 2p branes we conjectured a new quantum McKay

correspondence where a new set of sheaves dual to the fractional 2p-branes play the role

of the tautological bundles for the fractional zero-branes. In this paper, we use the toric

description to determine these dual objects carefully for fractional two-branes on C3/Zn

orbifolds.

The organisation of the paper is as follows: In section 2, we discuss aspects of local

Chern characters that one needs to work with in the context of non-compact manifolds.

In sections 3 and 4, we systematically work out the Chern characters for coherent sheaves

associated with fractional zero- and two-branes for the resolutions of the orbifolds, C3/Z3

and C3/Z5. This is done by using the open-string Witten index computed in conformal

field theory as input along with an ansatz for the form of the Chern character of the

coherent sheaves. We fix an ambiguity that arises due to linear equivalences and then

present concrete objects that reproduce the computed Chern character. In section 5, we

discuss the quantum McKay correspondence and work out the Chern character for sheaves

that are dual to the fractional two-branes and finally propose candidate objects for the

dual sheaves that are consistent with the computed Chern character. We present our

conclusions in section 6. Some of the details of the computations have been presented in

four appendices.

2. Background

The gauged linear sigma model has provided a concrete model which enables one to interpo-

late between orbifolds and their resolution. The complexified Fayet-Iliopoulos parameters

are the blow-up moduli and at “large volume” give the sizes of various cycles. In the pres-

ence of a boundary preserving B-type supersymmetry, at large volume, the D-branes are

best described as coherent sheaves while at the orbifold point one can construct boundary

states. Relating these two different descriptions has lead to a surprising connection to the

McKay correspondence for fractional zero-branes [12 – 14].

The main goal of this paper is to obtain a systematic understanding of coherent sheaves

that are obtained by analytic continuation of fractional two-branes from the orbifold point

to large-volume. The construction of the fractional two-branes as boundary states in the

orbifold is standard. The open-string Witten index is independent of this analytic con-

tinuation and provides an important input in identifying the relevant coherent sheaves.

However, this data is not enough to reconstruct even the Chern character (equivalently,

the RR charges). An additional complication is that the fractional two-branes are non-

compact objects and this has to be dealt with as well. As was shown in paper I, by working

in the full non-compact space rather than on compact sub-manifolds, one obtains an inte-

gral basis for the RR charges carried by the fractional two-branes. In examples with several

divisors having non-trivial intersections, such as the resolution of C3/Z5, the restriction to

a particular compact divisor is not useful either.
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As is well known, there is an intimate connection between the GLSM and toric ge-

ometry. We thus make use of standard constructions in toric geometry to systematise our

study. We also provide a self-contained description of the necessary details in the sequel

and the appendices. Based on these considerations, we write a general ansatz for the Chern

character of the fractional two-branes and fix the coefficients using the open-string Witten

index. However, this data is insufficient to fix all coefficients. We then provide additional

input using the structure of the boundary states that uniquely fixes all coefficients. Finally,

the heuristic method presented in I is used to provide candidate coherent sheaves that are

compatible with computed local Chern characters.

2.1 Local Chern characters for sheaves on non-compact CY

In general, for a variety X, the Chern character is a map from the K-group K(X) to the

Chow group with rational coefficients A∗(X) ⊗ Q,

ch : K0(X) → A∗(X) ⊗ Q . (2.1)

By standard definitions we may identify

A∗(X) ⊗ Q = ⊕Ap(X) ⊗ Q = ⊕An−p ⊗ Q . (2.2)

Following [15], it is particularly easy to write down the Chow group Ak(X) in the case

of a toric variety. For a toric variety X = X(∆), where ∆ is the corresponding fan, Ak(X)

is generated by all the classes of the orbit closures V (σ) of (n−k) dimensional cones of the

fan ∆, modulo relations. With the last caveat on relations, the statement above is true for

non-compact as well as compact varieties.

Now the orbit closures for a given fan ∆ may be simply written down in terms of the

divisors Di, corresponding to the orbit closure of the one-dimensional cones, as well as

the intersection of these divisors associated to orbit closures of higher dimensional cones

spanned by these one-dimensional cones. Thus the Chern character involves in general a

constant term for the rank, then terms of the form Di, terms of the form Di ·Dj and then

terms of the form Di ·Dj ·Dk. There are no more terms since we are dealing with a complex

threefold. For any given sheaf E, these terms have rational coefficients that have to be

determined.

Note that in the case of a non-compact variety, some of these terms may be in fact

zero. The classic example is the case of the the complex affine spaces, which have only one

cohomology, so in fact the relations in the Chow group set all but one of the Ak to zero.

However in our case without explicitly trying to determine such relations, we will use the

fact that in the intersection form only such triple intersections will survive as are allowed

by the toric construction. This we suppose will self-consistently determine which terms in

the Chern character will be zero or non-zero. It is easy to see that similar computation for

the affine spaces gives self-consistent results.

For completeness in appendix B, we give a brief introduction to some basic rules of

toric geometry. We describe there how one can identify the various compact divisors from

the toric data as well as the general rules for computing the triple intersections of divisors,

which will be used in later sections.
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2.2 Working with local Chern characters

After this prelude, we now move to the more practical aspects of working with local Chern

characters. It was realised in [16] that the use of local Chern characters is necessary even

for D-branes associated with compact submanifolds such as the fractional zero-branes. This

is also true for our application where we consider fractional two-branes.

In this paper will be dealing exclusively non-compact manifolds X which are the

crepant resolution of singular spaces C3/Γ, for some abelian discrete group Γ ⊂ SU(3).

Let D1, D2 and D3 denote the non-compact divisors and D4, D5, . . . denote the compact

divisors that are added to resolve the singular space C3/Γ. These divisors thus correspond

to four-cycles of X.2 The double intersection of non-compact divisors give non-compact

two-cycles and the other double intersections are compact two-cycles of X. If the triple

intersection involves at least one compact divisor, then we get points with compact moduli

spaces. Triple intersections that do not involve at least one compact divisor are set to

zero.3

As already mentioned, one has linear equivalences amongst the divisors which lead

to equivalences amongst the four- and two-cycles as well. In the non-compact situation,

one has to be careful in using linear equivalences involving the non-compact and compact

divisors. For instance, consider X to be the resolution of C3/Z3. The manifold X has one

compact divisor, D4 = P2. The linear equivalences are:

D1 ∼ D2 ∼ D3 , and D1 + D2 + D3 + D4 ∼ 0 .

The second linear equivalence is valid only in the presence of a compact divisor. By this

we mean that

D4 · (D1 + D2 + D3 + D4) ∼ 0 but D1 · (D1 + D2 + D3 + D4) ¿ 0 .

With this caveat in mind, we can use the linear equivalences to simplify expressions.

The obvious inclusion maps for a (compact) divisor j : D → X can be used to push-

forward the Chern characters of vector bundles on D to local Chern characters of sheaves

on X. For instance, the push-forward of the structure sheaf OD on X, denoted by j∗(OD),

is given by the sequence

0 → OX(−D) → OX → j∗(OD) → 0 (2.3)

which gives

ch
[

j∗(OD)
]

= D −
1

2
D · D +

1

6
D · D · D . (2.4)

The local Chern character of all line-bundles are obtained by tensoring the above sequence

suitably with an appropriate line-bundle. For vector bundles E with support on a divisor

2Poincaré duality provides an isomorphism between H4(X) and H2(X). Thus, when we write Di in the

Chern character, we take Di ∈ H2(X).
3Mathematically speaking, it is well-known that the only non-zero triple intersections are the ones that

involve at least one compact divisor. For an illustrative discussion of a closely related result in a related

context see for instance the discussion in section 9, ch.2 of Iversen’s text [17].
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D the push-forward can be worked out by considering a resolution of E in terms of line

bundles and then by pushing forward each term to X. The local Chern character of the

push-forward sheaf, j∗(E), can then be computed in a straightforward fashion. As an

example, let D denote the compact divisor in the resolution of C3/Z3 and ΩP2(1) the

vector bundle given by the following exact sequence (the Euler sequence)

0 → Ω1
P2(1) → O⊕3

P2 → OP2 → 0 . (2.5)

The local Chern character of the push-forward of Ω1
P2(1) is then given by

ch
[

j∗(ΩP2(1))
]

= 3 ch
[

j∗(OP2)
]

− ch
[

j∗(OP2(1))
]

. (2.6)

Before we write down an explicit form in specific cases for the Chern character it is

useful also to take into account some simplification provided by linear equivalences and

symmetry. Thus for the Chern character of a sheaf E on the blow-up of C3/Z3, we can

write the following ansatz:

ch(E) = a′1 + a2D4 + a′2D1 + a3D1 · D4 + a′3D1 · D2 + a4p , (2.7)

where the prime indicates terms involving only non-compact divisors. Note that we have

used the linear equivalence among the Di(i 6= 4), but have not used it for D4. We remind

the reader that the allowed triple intersection terms should have at least one D4 in them.

To save on notation we have clubbed all triple intersection terms together and re-written

the term as a single coefficient times the class of a point p.

Obviously for the toric description of the blow-up of other C3/Zn orbifolds the form

of ch(E) will be different depending on the structure of the appropriate fan and the cor-

responding compact and non-compact divisors. We write them down for specific cases in

the sequel.

3. Local Chern characters of the fractional two-branes: C3/Z3

3.1 General method

We now discuss the general method that we use to compute the local Chern character

for the fractional two-branes. Unlike the fractional zero-branes where one needs to use

the McKay correspondence to obtain the Chern character, for the fractional two-branes

additional information is given by the open-string Witten index for strings connecting

them to fractional zero-branes and as we will demonstrate will prove sufficient to fix the

local Chern character of the fractional two-branes. The inputs that are used to compute

the Chern character of the fractional two-branes are the following.

• The intersection matrix (this is called I0,2 in the sequel) which encodes the open-

string Witten indices between the various fractional zero- and two-branes. This is

taken from the CFT computation since it is independent of Kähler moduli.

• An ansatz for the local Chern character analogous to eq. (2.7) that takes into account

linear equivalences among divisors.
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• The non-compact terms in the local Chern character are identical for all fractional

two-branes and equals Di ·Dj (for some i, j) when the fractional two-brane is given by

φi = φj = 0. This corresponds to a specific choice for the coefficients associated with

the non-compact divisors (we indicate these coefficients with a prime in our ansatz).

This is justified later.

With these inputs, the local Chern character is uniquely fixed up to the class of a point.

We will show that these Chern characters that we calculate provide a justification for the

imprecise and heuristic way of accounting for the fractional charge that we had given in

paper I.

We will now present two arguments, one geometric and the other a worldsheet one, to

show that the non-compact contribution to the Chern character of the fractional two-brane

is given by Di ·Dj . The geometric argument is as follows. As a concrete example, consider

the non-compact terms in the ansatz for C3/Z3 as given in eq. (2.7). A non-vanishing

value for a′1 corresponds to a (non-compact) D6− brane wrapping the resolution of C3/Z3

while a non-vanishing value for a′2 corresponds to a (non-compact) D4-brane wrapping the

four-cycle given by say, φ1 = 0. Clearly, this cannot be the case since the large-volume

limit corresponds to blowing up compact four-cycles. Thus we conclude a′1 = a′2 = 0.

This argument is valid for other examples as well. For a fractional two-brane given by

φi = φj = 0, again one can rule out all contributions other than Di · Dj . The second

argument is a worldsheet one. Recall that the resolution of the orbifold singularity arise

from closed-string moduli that appear in the twisted sector in the CFT. At the CFT point,

the D-branes are described by boundary states which can be schematically written as

|B〉 = |B〉untwisted + |B〉twisted . (3.1)

where we have explicitly separated contributions from the untwisted sector and the twisted

sector. The |B〉untwisted does not couple to the Kähler moduli. In particular, the one-point

function on a disk of the corresponding vertex operator obtains a vanishing contribution

from the untwisted sector. This also implies that the separation in eq. (3.1) holds even after

resolving the singularity and in particular, in the large volume limit. Thus, one expects

|B〉large volume = |B〉untwisted + |B〉deformed
twisted , (3.2)

where the twisted sector boundary state is deformed by the Kähler moduli while the un-

twisted sector boundary state is identical to the CFT one. The non-compact terms arise

solely from |B〉untwisted and are identical for all fractional two-branes and matches the

expectation that it be Di · Dj for a fractional brane given by the boundary condition

φi = φj = 0 at the CFT end. This is also consistent with the geometrical picture of these

fractional two-branes as extended objects not localised at the singularity.

3.2 Toric geometry of C3/Z3

The simplest orbifold to consider is C3/Z3 (and its unique crepant resolution) with Z3

action 1
3 (1, 1, 1).4 The resolution of the orbifold requires the blowing up of the singular

4The notation used here follows the one used in paper I.
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v
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v
v4

3

2

1

1
2

3

Figure 1: Toric diagram for C3/Z3. The dotted lines indicated the dual polytope.

point at the origin to a P2. The toric data associated with the orbifold is given by three

vectors (see appendix B and ref. [18] for a review)

v1 =







1

0

0






, v2 =







0

1

0






, v3 =







−1

−1

3






. (3.3)

The crepant resolution of the orbifold is given by the addition of one vector:

v4 =







0

0

1






. (3.4)

The vector v4 is associated with a compact divisor D4 = P2. The four vectors are not

independent and satisfy a relation, which we write as

5
∑

i=1

Qi vi = 0 , a = 1, 2

with

Qi =
(

1 1 1 −3
)

This toric data is represented by the figure given below, in which the various cones have

been labelled as well.
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The toric data can be naturally interpreted in terms of the Gauged Linear Sigma Model

(GLSM) [19]. The GLSM associated with this toric data consists of four fields φi (one for

each vector vi) and one U(1) with charge vectors Qi. The D-term equations are

|φ1|
2 + |φ2|

2 + |φ3|
2 − 3|φ4|

2 = r (3.5)

From the above D-term condition, we see that for r À 0 and φ4 = 0, we have a P2 with

homogeneous coordinates φ1, φ2 and φ3. The orbifold limit is obtained when r ¿ 0. Here

φ4 necessarily has a non-zero vacuum expectation value =
√

|r|/3 and the U(1) is broken to

a Z3 with an action of 1
3(111) on φ1, φ2 and φ3 respectively. The divisors Di are associated

with the four-cycles given by φi = 0.

3.3 Triple Intersections

The linear equivalences among the divisors are

D1∼D2∼D3 and D1 + D2 + D3 + D4∼0 .

These equivalences are valid in the presence of a compact divisor. Intersections of the

compact divisors among themselves are

D3
4 = 9, D2

4 · D1 = −3, D4 · D
2
1 = 1, (3.6)

D4 · D1 = h, D2
4 = −3h . (3.7)

From the above intersections we can write down the intersections of the compact and

non-compact divisors with h

D4 · h = −3, D1 · h = 1 . (3.8)

3.4 Fractional zero-branes

At the orbifold point, we impose Dirichlet boundary conditions, φi = 0, i = 1, 2, 3. We get

three fractional boundary states associated with these boundary conditions with a Z3 which

cyclically permutes them. We label the analytic continuation of these D-branes to large-

volume by S
(0)
a (a = 1, 2, 3). The open-string Witten index is invariant under this analytic

continuation and provides an important input in our analysis [20]. At large-volume, it

becomes the intersection form which we denote by 〈E,F 〉 for two sheaves E and F . It is

the defined by

〈E,F 〉 =

∫

X

ch(E∗) ch(F ) Td(X) . (3.9)

Define the matrix:

I0,0
a,b = 〈S(0)

a , S
(0)
b 〉 . (3.10)

Their intersection form computed as the open-string Witten index in the CFT is found to

be

I0,0 = −(1 − g)3 , (3.11)

– 9 –
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where g, the generator of the quantum Z3 at the orbifold point is given by the shift matrix

g =







0 1 0

0 0 1

1 0 0






. (3.12)

The Chern classes for the fractional zero-branes in this example is well known in the

literature and were first determined in [21]. The Chern classes for the fractional zero-branes

are known to be

ch
[

S
(0)
0

]

= D4 + (3/2)h + (3/2)p = ch
[

j∗(OP2)
]

,

ch
[

S
(0)
1

]

= −2D4 − 2h − p = −ch
[

j∗(ΩP2(1))
]

, (3.13)

ch
[

S
(0)
2

]

= D4 + h/2 + p/2 = ch
[

j∗(OP2(−1))
]

,

where j : D4 → X. On can independently verify that the Chern classes written above are

compatible with the CFT data.

3.5 Fractional two-branes

The fractional two-branes are obtained in the CFT by imposing Dirichlet boundary condi-

tions φ1 = φ2 = 0 and imposing a Neumann boundary condition on φ3. Using the general

method in section 3.1, we are ready to determine the Chern characters of the large-volume

analogues of the fractional two-branes. Define the matrices:

I0,2
a,b = 〈S(0)

a , S
(2)
b 〉 ,

I2,2
a,b = 〈S(2)

a , S
(2)
b 〉 , (3.14)

where S
(0)
a are the large volume analogues of the fractional zero-branes and the S

(2)
b are

the corresponding objects for the fractional two-branes.

From the CFT computations for the C3/Z3 orbifold in I, we know that

I0,2 = −(1 − g)2 and I2,2 = g(1 − g) . (3.15)

It is now simple to insert ansatz (2.7) that we had written down for the Chern character of

the S
(2)
i above and try to solve for the coefficients using the CFT data given in eq. (3.15).

The non-compact part of the Chern character is taken to be D1 ·D2, i.e., a′1 = a′2 = 0 and

a′3 = 1 for all three fractional two-branes. The Chern classes of the fractional two-branes

as obtained from the orbifold intersection from is

ch(S
(2)
0 ) = D4 + (3/2)h + D1·D2 + a4 p ,

ch(S
(2)
1 ) = −D4 − (1/2)h + D1·D2 + b4 p , (3.16)

ch(S
(2)
2 ) = D1·D2 + c4 p ,

where a4, b4, c4 are the coefficients that are not fixed by the intersection numbers. Again,

these choices are compatible with the second intersection form given in eq. (3.15). Note

that I2,2 was not used in fixing the coefficients appearing in the ansatz (2.7) and thus it

can be used as an additional check.
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3.6 Geometry of the fractional two-branes

We can now see that these Chern characters provide some precise justification for the

heuristic constructions of Paper I where we had constructed the large volume analogues

of the fractional two-branes using some exact sequences (in particular, see section 4.5,

eq. (4.20)-(4.22)). These sequences however were imprecisely defined, mathematically

speaking, since we introduced fractional Chern classes for these objects. The meaning

of these sequences now becomes clearer. The objects indicated by these sequences will be

interpreted as contributing to the compact part of the Chern character, thus retaining their

original mathematical meaning, while the fractional part will contribute precisely to the

non-compact D1 ·D2 term of the Chern character. This (implicitly additive) separation is

allowed since the Chern character is also additive for direct sums. We can rewrite eq. (3.8)

as D4 · D4 · D2 = −3 and D1 · D4 · D2 = 1 utilising linear equivalence. In the background

of a compact divisor, namely D4, this reflects the fact that the non-compact contribution,

D1 ·D2 accounts for exactly 1/3 of the unit charge given by the D4 ·D2 contribution. Thus

using the eq. (4.26)-(4.28) of paper I we obtain the following:5

ch
[

S
(2)
0

]

= ch
[

j∗(OP2)
]

+ D1 · D2 ,

ch
[

S
(2)
1

]

= ch
[

j∗(OP2(−1)
]

+ D1 · D2 , (3.17)

ch
[

S
(2)
2

]

= D1 · D2 .

We can compute the Chern character of the pieces ch[j∗(. . .)] using the techniques discussed

in section 2 and verify that indeed we reproduce the Chern characters computed in the

previous subsection in eq. (3.16). Thus the apparently imprecise sequences of paper I are

indeed meaningful provided we exercise some care in interpretation.

We can now of course recall the physics side of the story from paper I in the language

of what we had referred to as Higgs and Coulomb branes and their construction in terms

of the bulk fermion degrees of freedom that survive on the boundary of the world-sheet. In

order to do this, we first separate the contributions when φ3 = 0 from those that are present

when φ3 6= 0. At the orbifold point, the first contribution is localised at the singularity.

This contribution is similar to that of fractional zero-branes on a C2/Z3 orbifold (where the

coordinates of C2 are φ1 and φ2). Due to this similarity, following Martinec and Moore [29],

we call the contribution when φ3 = 0 as the Higgs branch and the contribution when φ3 6= 0

the Coulomb branch. As we will see, some of the fractional two-branes have both branches

– we call them the Higgs branes while some only have a Coulomb branch — we call them

the Coulomb branes.

We will now use a method that was alluded to but not used in paper I to extract the

Higgs branch contributions of the fractional two branes. Now, there are only two fermions

ξ1 and ξ2 coming from the Dirichlet boundary conditions6 since the fermionic partners of

the Neumann scalars do not contribute as suggested in paper I. The compact part of the

5An independent explanation is also given below.
6For Dirichlet boundary conditions preserving B-type supersymmetry, the ξ’s are the linear combination

not set to zero. Further, these are the “observables” in the topological B-model. See paper I for a more

detailed discussion.
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fractional two-branes are in one-to-one correspondence with the states given in the table

below (the vacuum |0〉 satisfies ξ̄i|0〉 = 0 for i = 1, 2) subject to the gaugino constraint

being satisfied:

φ1ξ̄1 + φ2ξ̄2 = 0 . (3.18)

Label S
(2)
0 S

(2)
1 S

(2)
2

U(1) charge 0 1 2

State |0〉 ξi|0〉 ξ1ξ2|0〉

Higgs branch D4 D4 —

In the above table, we indicate based on the detailed discussion below, the divisor

on which the gaugino constraint can be satisfied when φ3 = 0. As explained earlier, we

will distinguish the contribution when φ3 = 0 and when φ3 6= 0 — both possibilities are

permitted by the Neumann boundary condition. In the Higgs branch, at large volume,

φ1 = φ2 = 0 is not allowed. This is however allowed in the Coulomb branch where φ3 6= 0.

Thus the Coulomb branch contribution to the Chern classes of the fractional two-branes

contain D1 · D2. This is consistent with the Chern character that we obtained for S
(2)
2 in

eq. (3.16).

S
(2)
1 The gaugino constraint implies that we have a rank one bundle in the Higgs branch

which can be identified with j∗(OP2(−1)).

S
(2)
2 This is a Coulomb brane since the gaugino constraint cannot be satisfied when φ3 = 0.

S
(2)
0 This is a line bundle which can be identified with j∗(OP2).

In this example, the Coulomb branch is identical to the non-compact contribution to the

Chern class and is identical for all three fractional two-branes. As we will see, in the

next example, the Coulomb branch is not the same as the non-compact term though it

contains it. In the more intricate cases we will need both the precise Chern character

computation and the physics construction of the boundary states using the fermions and

their interpretation to pin down the objects corresponding to the large-volume analogues

of all the fractional two-brane states

3.7 A change of basis

As we just saw, the Higgs branes have two kinds of contributions, one from the Higgs branch

and the other from the Coulomb branch. We will now exhibit an integral change of basis

which removes the Coulomb branch from the Higgs branes. Let Ŝ(2) = (Ŝ
(2)
0 , Ŝ

(2)
1 , Ŝ

(2)
2 )T

represent the new basis and S(2) the original basis of fractional two-branes. Then,

Ŝ(2) =







1 0 −1

0 1 −1

0 0 1






S(2) . (3.19)

is the required change of basis. Note that it is an upper-triangular matrix.
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4. The C3/Z5 example

We will consider the example of the orbifold C3/Z5 with the action 1
5 (1, 1, 3). As discussed

in appendix B, the resolution of this requires the blowing up of a P2 and a Hirzebruch

surface F3 (which is a P1 fibration over P1) [16, 23]. The two exceptional divisors intersect

along a curve which is a hyperplane on the P2. The toric data associated with the orbifold

is given by three vectors

v1 =







1

0

0






, v2 =







−1

−3

5






, v3 =







0

1

0






. (4.1)

The unique crepant resolution of the orbifold is given by the addition of two vectors:

v4 =







0

−1

2






, v5 =







0

0

1






. (4.2)

As explained in appendix B, the vector v4 is associated with the P2 and v5 with the

Hirzebruch surface F3. The five vectors are not independent and satisfy two relations,

which we write as
5

∑

i=1

QA
i vi = 0 , A = 1, 2

with

QA
i =

(

1 1 0 −3 1

0 0 1 1 −2

)

.

In figure 2, the toric data is represented by the following projection on a two-dimensional

plane.

The GLSM associated with this toric data consists of five fields φi (one for each vector

vi) and two U(1)’s (one for each relation) with charge vectors QA
i . The D-term equations

are

|φ1|
2 + |φ2|

2 + |φ5|
2 − 3|φ4|

2 = r1 ,

|φ3|
2 + |φ4|

2 − 2|φ5|
2 = r2 . (4.3)

From the first D-term condition, we see that for r1 À 0 and φ4 = 0, we have a P2

with homogeneous coordinates φ1, φ2 and φ5. The base of F3 is the P1 is given by the

hypersurface φ5 = 0 in the P2 and thus has homogeneous coordinates φ1 and φ2. The

second D-term for r2 À 0 and φ5 = 0, gives a P1 with homogeneous coordinates φ3 and

φ4. This P1 is the fibre of F3.

The orbifold limit is obtained by first considering a particular linear combination of

the above two D-term conditions, i.e., the one associated with Qi ≡ (Q1
i + 3Q2

i ):

|φ1|
2 + |φ2|

2 + 3|φ3|
2 − 5|φ5|

2 = r1 + 3r2 . (4.4)

In the limit (r1 + 3r2) ¿ 0, φ5 necessarily has a non-zero vev =
√

|r1 + 3r2|/5 and the

associated U(1) is broken to a Z5 with an action of 1
5 (113) on φ1, φ2 and φ3 respectively.
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v1 v4

v5

v3

v2

4

3

5

1
2

Figure 2: Toric diagram for C3/Z5

4.1 Triple Intersections

The linear equivalences among the divisors are

D1∼D2∼D5 + 2D3 and D1 + D2 + D3 + D4 + D5∼0 .

These equivalences are valid in the presence of a compact divisor. Intersections of the

compact divisors among themselves are

D3
4 = 9, D2

4·D5 = −3, D4·D
2
5 = 1, D3

5 = 8 . (4.5)

Intersections of the compact divisors with the non-compact divisors are

D2
4 · D1 = −3, D4 · D5 · D1 = 1, D2

5 · D1 = −2, D2
5 · D3 = −5 ,

D2
1 · D4 = 1, D5 · D

2
1 = 0, D5 · D1 · D3 = 1, D2

3·D5 = 3 . (4.6)

We also have

D4 · D5 = D4 · D1 = h, D4 · D3 = 0, D5 · D1 = f, D3 · D5 = h + 3f . (4.7)

where f is the P1 fibre of F3 and h is the hyperplane in P2. The self intersections of D4

and D5 are

D2
4 = −3h, D2

5 = −2h − 5f .

From the above intersections we can write down the intersections of the compact and

non-compact divisors with h and f

D4·h = −3, D4·f = 1, D5·h = 1, D5·f = −2 ,

D1·h = 1, D1·f = 0, D3·h = 0, D3·f = 1 . (4.8)
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4.2 Fractional zero-branes

At the orbifold point, we impose Dirichlet boundary conditions, φi = 0, i = 1, 2, 3. We get

five fractional boundary states associated with these boundary conditions with a Z5 which

cyclically permutes them. Their intersection form is

I0,0 = −(1 − g)2(1 − g3) , (4.9)

where g denotes the 5 × 5 shift-matrix that generates the Z5. One can choose an ansatz

analogous to the one in (2.7) and determine the Chern characters of the fractional branes

using the above intersection form. The relevant ansatz is

ch(E) = a′1 + a2D4 + a3D5 + a′2D1 + a′3D3 + a4h + a5f + a′4D
2
1 + a′5D1 ·D3 + a6p . (4.10)

Of course, the compact nature of the fractional zero-branes implies that all the non-compact

pieces (indicated by adding a prime to the coefficient) vanish for fractional zero-branes. The

fractional zero-branes are known to have the following local Chern character

ch
[

S
(0)
0

]

= D4 + D5 + (3/2)h + (5/2)f ,

ch
[

S
(0)
1

]

= −2D4 − D5 − 2h − (3/2)f ,

ch
[

S
(0)
2

]

= D4 + h/2 , (4.11)

ch
[

S
(0)
3

]

= −D5 − (5/2)f ,

ch
[

S
(0)
4

]

= D5 + (3/2)f .

These were first obtained in [23, 16] using the McKay correspondence which we discuss in

section 5 to obtain the Chern characters of the fractional zero-branes. This is done by first

obtaining the tautological bundles and then computing their duals. The Chern character

is clearly compatible with eq. (4.10) and one sees that the coefficients of the non-compact

terms vanish as expected.

As this has not been discussed earlier in the literature, we will now write out concrete

objects which will correspond to specific choices for the coefficient of the class of a point

using the physical method proposed in paper I. The gaugino constraint (for the vector

multiplet associated with the D-term in eq. (4.4)) is

φ1ξ̄1 + φ2ξ̄2 + 3φ3ξ̄3 = 0 . (4.12)

The fractional zero-branes are in one-to-one correspondence with the states [22, 14]: (the

vacuum |0〉 satisfies ξ̄i|0〉 = 0 and the index a = 1, 2) subject to the gaugino constraint

eq. (4.12) being satisfied. In the third row of the above table, we indicate the divisors on

which this is possible based on the following considerations. Let us consider the various

states and identify the corresponding coherent sheaves.

S
(0)
1 The gaugino constraint is trivially satisfied when both φ1 = φ2 = 0. Thus, the sheaf

has rank two when φ1 = φ2 = 0 and rank one when either φ1 6= 0 and/or φ2 6= 0. By

studying the two D-terms given in eq. (4.3), we can see that the rank two condition
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Label S
(0)
0 S

(0)
1 S

(0)
2 S

(0)
3 S

(0)
4

U(1) charge 0 1 2 3 4

State |0〉 ξa|0〉 ξ1ξ2|0〉 ξ3|0〉 ξaξ3|0〉

D4 and D5 D4 and D5 D4 D5 D5

is possible (at large volume) only if φ5 6= 0. Thus, the rank two part has support on

the compact divisor D4 while the rank one part has support on D5. Thus, we expect

the following to hold:

S
(0)
1 = i∗(V ) + j∗(W ) .

where V is a rank-two bundle on D4 = P2 and W is a line-bundle on D5 = F3. In

fact, one can identify V with ΩP2(1) and W with OD5
(−D1 − D4).

S
(0)
2 The gaugino constraint holds only when φ1 = φ2 = 0 and hence S2 has support on

D4 where it is a line-bundle OP2(−1).

S
(0)
3 The gaugino constraint holds when φ3 = 0 which requires φ4 6= 0. Thus, S

(0)
3 is

the push-forward of a line-bundle on D5. The line bundle can be identified with

OD5
(−D4).

S
(0)
4 The gaugino constraint holds when φ3 = 0 and when either φ1 6= 0 or φ2 6= 0. The

D-term constraints imply that S4 is the push-forward of a line-bundle on D5. The

line bundle can be identified with OD5
(−D1 − D4).

S
(0)
0 The gaugino constraint trivially holds and hence S0 is the direct sum of the push-

forward of line-bundles on D4 and D5. The two line bundles are OP2 and OD5
(−D4).

We will now move on to the fractional two-branes next. There two inequivalent types

of fractional two-branes in this example — we can impose Neumann boundary condition

on φ1 or φ3. We will label them A and B respectively instead of the notation S(2) used in

the C3/Z3 example.

4.3 Fractional two-branes — Type I

We will first consider the fractional two-branes obtained by imposing a Neumann boundary

condition on φ1 and Dirichlet boundary conditions φ2 = φ3 = 0. The master formula given

in paper I provides us the intersection form amongst the fractional two-branes as well as

the intersection with the fractional zero-branes. We obtain

I0,2 = −(1 + g − g2 − g4) , (4.13)

I2,2 = −(g4 − g) . (4.14)

The Chern classes of the fractional two-branes as obtained using the method discussed in

section 3.1 are

ch[A0] = D4 + D5 + D2·D3 + (3/2)h + (5/2)f ,
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ch[A1] = −D4 + D2·D3 − (1/2)h + f ,

ch[A2] = D2·D3 + f , (4.15)

ch[A3] = −D5 + D2·D3 − (3/2)f ,

ch[A4] = D2 · D3 .

The non-compact contribution is D2 · D3 as discussed in section 3.1.

We now proceed to obtain coherent sheaves which reproduce the above Chern classes.

For the chosen boundary condition, there are only two fermions ξ2 and ξ3. The Higgs

branch of the fractional two-branes are in one-to-one correspondence with the states: (the

vacuum |0〉 satisfies ξ̄i|0〉 = 0 for i = 2, 3.) We will work out the component corresponding

to the Higgs branch i.e., when φ1 = 0. For D4, this picks out a P1 ∈ D4 (with homogeneous

coordinates φ2 and φ5) and a P1 ∈ D5 (with homogeneous coordinates φ3 and φ4). subject

Label A0 A1 A2 A3 A4

U(1) charge 0 1 2 3 4

State |0〉 ξ2|0〉 – ξ3|0〉 ξ2ξ3|0〉

Higgs branch D4 and D5 D4 — D5 —

to the gaugino constraint eq. (4.12) being satisfied.

In the Higgs branch where φ1 = 0, at large volume, φ2 = φ3 = 0 is not allowed and

φ2 = φ5 = 0 is also not allowed. These are however allowed in the Coulomb branch where

φ1 6= 0. Thus the Coulomb branch contributions to the Chern classes of the fractional

two-branes contain D2 · D3 and/or D2 · D5 = f . This is consistent with the Chern classes

that we obtain for A2 and A4 which have a vanishing Higgs branch. Clearly, we see that

the Coulomb branch involves a compact piece as well.

A1 The gaugino constraint needs φ2 = 0. Thus, one needs φ5 6= 0. Thus, the fractional

two-brane has support only on D4 and is the line-bundle OD4
.

A2 This is one of the Coulomb branes.

A3 This needs φ3 = 0. It has support on D5 alone and the Higgs branch is the line

bundle OD5
(−D1 − D4).

A4 This needs φ2 = φ3 = 0. So this is another Coulomb brane.

A0 This has support on both D4 and D5 and the Higgs branch is the push-forward of

two line bundles on these divisors. These are OD4
and OD5

(−D4) respectively.

Comment: A0 A1, A2 are in some ways similar to fractional two-branes on the resolution

of C3/Z3.
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4.4 Fractional two-branes — Type II

We will consider the fractional two-branes obtained by imposing Neumann boundary con-

ditions on φ3 and φ1 = φ2 = 0. The master formula given in paper I provides us the

intersection form amongst the fractional two-branes as well as the intersection with the

fractional zero-branes. We obtain

I0,2 = −g2(1 − g)2 , (4.16)

I2,2 = g − g2 + g3 − g4 . (4.17)

The Chern classes obtained from the intersection form at the orbifold point are (ignoring

the class of a point)

ch[B0] = D4 + D5 + D1 · D2 + (3/2)h + (5/2)f ,

ch[B1] = −D4 − D5 + D1 · D2 − h/2 − (3/2)f ,

ch[B2] = D1 · D2 , (4.18)

ch[B3] = D4 + D1 · D2 + (3/2)h ,

ch[B4] = −D4 + D1 · D2 − h/2 .

For the given boundary condition, there are only two fermions ξ1 and ξ2. The Higgs

branch of the fractional two-branes are in one-to-one correspondence with the states: (the

vacuum |0〉 satisfies ξ̄a|0〉 = 0 for a = 1, 2.) subject to the gaugino constraint eq. (4.12)

Label B0 B1 B2 B3 B4

U(1) charge 0 1 2 3 4

State |0〉 ξa|0〉 ξ1ξ2|0〉 — —

Higgs branch D4 and D5 D5 — — —

being satisfied.

The Higgs branch is when φ3 = 0. In this case, at large volume, it is not possible to

have either φ4 = 0 or φ1 = φ2 = 0. This is possible in the Coulomb branch where φ3 6= 0.

Thus the contributions of the Coulomb branes can arise these two sources. The associated

Chern classes are (D4 + 3h/2 + 3p/2) (from φ4 = 0) and D1 · D2 (from φ1 = φ2 = 0).

B1 The contribution that arises on D5 is as in the case of S
(0)
1 and is the line-bundle

OD5
(−D1 − D4). The D4 appearing in the Chern character must come from the

Coulomb branch since φ4 = 0 is not allowed at large volume when φ3 = 0.

B2 This has support when φ1 = φ2 = 0. In the Higgs branch, φ3 = 0 and hence this is

not allowed. Hence, this is a Coulomb brane.

B3 This is one of the Coulomb branes.

B4 This is one of the Coulomb branes.
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B0 The discussion is similar to S
(0)
0 and the Higgs branch of the sheaf has support on

both D4 and D5 and can be identified with the direct sum of the push-forward of the

line-bundles OP2 and OD5
(−D4).

4.5 A change of basis

As we just saw, the Higgs branes have two kinds of contributions, one from the Higgs

branch and the other from the Coulomb branch. We will now exhibit an integral change of

basis which removes the Coulomb branch from the Higgs branes. Let Â = (Â0, . . . , Â4)
T

represent the new basis for type I fractional two-branes and B̂ the new basis for the type

II fractional two-branes. Then,

Â =















1 0 0 0 −1

0 1 −1 0 0

0 0 1 0 0

0 0 0 1 −1

0 0 0 0 1















A , (4.19)

B̂ =















1 0 −1 0 0

0 1 0 0 −1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















B . (4.20)

are the required change of bases. It is of interest if this change of basis is related to a

change of basis proposed by Moore and Parnachev in [24].

5. Quantum McKay correspondence

The McKay correspondence [25 – 27] can be stated in several different forms. We will

consider the one due to Ito and Nakajima [28] where the McKay correspondence is presented

as a duality between two families of sheaves. The first family is given by the coherent

sheaves associated with the fractional zero-branes and the second one is associated with

the so-called tautological bundles. The duality is stated as [16]

(S(0)
a , Rb

(0))X ≡

∫

X

ch(Rb
(0)) ch(S(0)

a ) Td(X) = δb
a , (5.1)

where we remind the reader that X is the crepant resolution of the orbifold. Note that

the above expression is not the intersection form and hence we indicate the inner product

by (, ) rather than 〈, 〉. Inspired by this, a generalisation called the quantum McKay

correspondence was proposed in I for the fractional 2p -branes and is stated as the following

duality:

(S(2p)
a , Rb

(2p))X ≡

∫

X

ch(Rb
(2p)) ch(S(2p)

a ) Td(X) = δb
a . (5.2)

This seems to be related to a correspondence of Martinec and Moore [29] in the context

of non-supersymmetric orbifolds. In the following we shall obtain the Chern characters of
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the duals for the fractional two-branes in the two working examples in the paper: C3/Z3,

C3/Z5. As always, the intersection numbers do not uniquely fix the Chern class due to the

linear equivalences among the divisors. Unlike the fractional two-branes, we are unable to

fix this ambiguity by appealing to CFT.

5.1 C3/Z3 orbifold

The Chern characters for the R-sheaves corresponding to the Higgs branes are

ch(R0
(2)) = D1 −

D2
1

2
,

ch(R1
(2)) = D1 −

3D2
1

2
, (5.3)

and for the R-sheaf dual to the Coulomb brane among the fractional two-branes, the Chern

character is

ch(R2
(2)) = D1 + D4 −

2h

3
. (5.4)

5.2 C3/Z5 orbifold

Recall that there are two types of fractional two-branes in this example. We quote the

duals for both types of fractional two-branes.

Type I. The Chern characters of the R-sheaves dual to the Higgs branes are:

ch(R0
(2)) = D1 −

D2
1

2
,

ch(R1
(2)) = D1 −

3D2
1

2
,

ch(R3
(2)) = D1 −

D2
1

2
− D1·D3 . (5.5)

The corresponding Chern characters for the R-sheaves dual the Coulomb branes with are:

ch(R2
(2)) = D1 + D4 −

5D2
1

2
−

3h

2
,

ch(R4
(2)) = D1 + D4 + D5 +

D2
1

2
−

h

2
−

3f

2
. (5.6)

Type II. The Chern characters of the R-sheaves for the Higgs branes are:

ch(R0
(2)) = D3 −

D2
3

2
,

ch(R1
(2)) = D3 −

3D2
3

2
− D3·D1 . (5.7)

The Chern characters for the R-sheaves for the Coulomb branes are:

ch(R2
(2)) = D3 + D4 + D5 +

D2
3

2
−

h

2
+

f

2
,

ch(R3
(2)) = D3 + D5 −

3D2
3

2
− h −

7f

2
,
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ch(R4
(2)) = D3 + D5 − h −

9f

2
− D1·D3 −

3D2
3

2
. (5.8)

In the above expressions the class of a point has not been shown, as it is undetermined.

We re-emphasise that in the above expressions, the terms corresponding to the fibres are

fixed only up to linear equivalences, while the leading terms corresponding to the divisors

are uniquely fixed by the equations.

Now one can try to write down explicit objects which have these Chern characters. Of

course, we don’t have the exact expressions for the complete Chern character. In particular

the class of a point is undetermined, so we cannot hope to retrieve the explicit objects.

However, the R-sheaves corresponding to the Higgs branes are expected to be given by line

bundles with support on the appropriate non-compact divisor. Looking for line bundles as

the corresponding objects, one can show that one can uniquely write down such line bundles

such that their Chern characters match with expressions for the R-sheaves corresponding

to the Higgs branes, up to the class of the point. The objects so obtained have a nice and

simple structure. The explicit representations for the Higgs branch branes are:

For the C3/Z3 orbifold:

R0
(2) = i∗ (OD1

) , (5.9)

R1
(2) = i∗ (OD1

(−D1)) , (5.10)

where i : D1 → X.

The C3/Z5 orbifold

Type I.

R0
(2) = i∗ (OD1

) , (5.11)

R1
(2) = i∗ (OD1

(−D1)) , (5.12)

R3
(2) = i∗ (OD1

(−D3) , (5.13)

where i : D1 → X.

Type II.

R0
(2) = j∗ (OD3

) , (5.14)

R1
(2) = j∗ (OD3

(−D1)) , (5.15)

where j : D3 → X. Using certain sequences one can check that the Chern characters of

these objects match with the expressions given above, up to the class of the point. This

has been carried in the appendix C.

Now for the Coulomb branch branes we have no such guide to write down the objects,

since there is no reason why they should be line bundles, for instance. Moreover, even if

one assumes that they are line bundles the choice of object is not unique. This is simply

because of the technical fact that there are more terms in the various expression of the

Chern character and there are many possible ways in which they can be written.
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However the crucial point to note is that the structure of the Chern characters for

these Coulomb branch branes is such that they cannot be written as objects restricted to

the appropriate non-compact divisor. So they are in general of the form

Ri
(2) = i∗A + j∗B , (5.16)

where A is an object with support on the corresponding non-compact divisor while B has

support on a compact divisor.

In the appendix D, we will nevertheless write down simple representative objects for

these Coulomb branch branes as well. It should be stated that this is not a unique repre-

sentation.

6. Conclusion

In this paper we have continued further with the study of the quantum McKay corre-

spondence that was proposed in our previous paper. To summarise, we have studied the

fractional two-branes in the C3/Z3 and the C3/Z5 examples in the framework of toric

geometry.

We have identified the Higgs branch branes as well as the Coulomb branch branes in

these examples. We have discussed further the quantum McKay correspondence for the

fractional 2 branes, generalising the McKay correspondence for the fractional zero branes.

We have given the explicit objects for the tautological branes corresponding to the

Higgs branch branes in terms of line bundles, with support on appropriate non-compact

divisors. For the Coulomb branch branes we see the associated R-sheaves are objects which

cannot be written as objects with support only on the non-compact divisors.

Our analysis has been based on several choices we made in solving the related equations

for computing the Chern character of the fractional two-branes as well as the R-sheaves.

However we feel that the very fact that a solution exists with the desired features is non-

trivial. A deeper understanding, both mathematically and physically, of the quantum

McKay correspondence is desirable.

It would be interesting if a more direct relation of our analysis could be found to the

discussion of Martinec and Moore using some version of the Hori-Vafa map [30].
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A. Some details of the push-forward

In this appendix, we will explain some of the relevant details of the push-forward map that

has been used in the main text of the paper. Let us consider the map i : X → Y . The

push-forward in homology is straightforward — i∗ : Hk(X) → Hk(Y ). After all a k-cycle

remains a k-cycle whether one is on one manifold or the other. What is non-trivial is the

push-forward in cohomology which one can figure out by using the usual Poincaré duality.

One first takes the Poincaré dual of a cohomology class in X, pushes forward the homology

class by i∗ and then takes the Poincaré dual again. If the dimensions of X and Y are m

and n respectively, then i∗ : Hk(X) → Hn−m+k(Y ). The next important fact is to note

that ∫

X

ω =

∫

Y

i∗ω . (A.1)

Notice that this works only if the entire integrand in the integral over Y is the i∗ of

something on X. To achieve this in general we need to use relations that are known in

the mathematical literature as projection formula. (Such projection formulae are quite

important and one needs to use the right one in context). The one relevant to us is as

follows:

i∗(E ⊗ i∗F ) = i∗(E) ⊗ F , (A.2)

where E ∈ H∗(X) and F ∈ H∗(Y ).

By the Grothendieck-Riemann-Roch theorem we have that

i∗
[

ch(E) Td(X)
]

= i∗
[

ch(E)
]

Td(Y ) . (A.3)

where E ∈ H∗(X). Using the GRR theorem and the projection formula, we can show the

intersection forms when computed in terms of local Chern characters in the total space are

the same as the ones computed directly on the compact divisor.

B. Toric geometry - basics

In this appendix, we will briefly review how to construct toric diagrams for orbifolds as well

as to read off various information about the orbifold space from the toric data. We will

discuss the specific examples of C3/Z3,C
3/Z5 orbifolds, which are discussed in the paper.

B.1 The C3/Z3 orbifold

First consider the C3/Z3 orbifold with orbifold action 1
3 [1, 1, 1]. In the toric geometry

picture this orbifold is represented by the cone spanned by the vertices

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (−1,−1, 3) . (B.1)

To see that this cone describes the C3/Z3 orbifold, we first construct the dual cone. This

is done by the following procedure. If (a, b, c) is a vector in the dual cone, then we look for

those vectors such that the inner product of this with each of the above vertices is positive

semidefinite. this gives the following inequalities.

a ≥ 0, b ≥ 0, 3c ≥ b + a . (B.2)
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Now we have to solve these inequalities to get the basis vectors of the dual cone. All other

solutions to (a, b, c) can be written as a positive linear combination of these basis vectors

and moreover no basis vector can be expressed as a positive linear combination of any

others. For the example at hand the solutions are given by the following 10 vectors.

v′1 = (0, 0, 1), v′2 = (3, 0, 1), v′3 = (0, 3, 1), v′4 = (2, 1, 1),

v′5 = (1, 2, 1), v′6 = (1, 1, 1), v′7 = (2, 0, 1), v′8 = (0, 2, 1),

v′9 = (1, 0, 1), v′10 = (0, 1, 1) . (B.3)

Each of these vectors is associated with a monomial. For example

v′1 ≡ Z, v′2 ≡ X3Z . (B.4)

Now we will digress a bit. Consider polynomials in two variables (U, V ). Then the domain

over which these arbitrary polynomials are well defined ,which we denote by C[U, V ], is

actually C2, so C[U, V ] is the coordinate ring of C2. We will use the shorthand notation

C[U, V ] ≡ C2. Similarly if we look at the domain over which polynomials of the variables

(U, V,U−1, V −1) are well defined it describes the space (C∗)2, because the functions are not

defined at (U, V ) = (0, 0). Similarly if we consider polynomials in three variables (U, V,W ),

then C[U, V,W ] ≡ C3. The orbifold C3/Z3 with orbifold action 1
3 [1,1,1] on (U, V,W ) can

be described as the domain over which all polynomials constructed out of variables, which

are single valued on the orbifold, is defined. Therefore,

C3/Z3 ≡ C[U3, V 3,W 3, UV W,UV 2, V U2, V W 2,WV 2, UW 2,WU2] . (B.5)

Now we can see how to read off the space from the data we obtained from the dual

cone. Writing the monomial associated to each of the dual basis vectors we construct the

domain over which polynomials with these monomials as the variables are well defined.

This in our notation is written as

C[Z,X3Z, Y 3Z,X2Y Z,XY 2Z,XY Z,X2Z, Y 2Z,XZ, Y Z] .

After changing variables to X = U
W

, Y = V
W

and Z = W 3, we get

C[W 3, U3, V 3, U2V, V 2U,UV W,U2W,V 2W,UW 2, V W 2] .

This is the description of C3/Z3, that we saw earlier.

B.1.1 Resolution of the orbifold

To resolve the orbifold, the strategy is to subdivide the cone into several smaller cones by

inserting more vectors in the interior of the cone such that for each sub-cone the determinant

of the generators of that particular cone, which is also the volume of the particular cone,

is one. One can easily see that this criteria is not satisfied by the original cone itself. For

the the C3/Z3 orbifold, this is achieved by taking one more vector

v4 = (0, 0, 1) , (B.6)
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Cone 1 Cone 2 Cone 3

c ≥ 0, a ≥ 0, 3c ≥ a + b c ≥ 0, b ≥ 0, 3c ≥ a + b c ≥ 0, a ≥ 0, b ≥ 0

v′1 = (0, 3, 1), v′1 = (3, 0, 1), v′1 = (1, 0, 0),

v′2 = (0,−1, 0), v′2 = (−1, 0, 0), v′2 = (0, 1, 0),

v′3 = (1,−1, 0) v′3 = (−1, 1, 0) v′3 = (0, 0, 1)

C[Y 3Z, Y −1,XY −1] C[X3Z,X−1, Y X−1] C[X,Y,Z]

which subdivides the cone to three sub-cones, each of which have a unit determinant. The

new cone so obtained is given in figure 1 Now as before construct the dual cones for each

of the cones, and as before we have the following inequalities. The divisor corresponding

to v4 is given by Z = 0 and is obtained by substituting Z = 0 in the above. Then one has

the following spaces C[X,Y ], C[X−1, Y X−1], C[Y −1,XY −1]. These are to be thought of

as local coordinate patches of some space. What space do these patches describe? They

describe the space P2. This can be seen by looking at the patches of P2. P2 is given by

(U, V,W ) ∼ (λU, λV, λW ). Then we have three patches given by the regions where U, V,W

are individually non zero. In each of these patches the coordinates can be taken to be

(V
U

, W
U

), (U
V

, W
V

), ( U
W

, V
W

). Defining X = U
W

and Y = V
W

, we have the following three

patches (X,Y ), (X−1, Y X−1), (Y −1,XY −1), so comparing with what we got from the

toric analysis we see that the space after resolution is indeed a P2 so we see that D4 ≡ P2.

B.2 The C3/Z5 orbifold

Now we consider the example of the C3/Z5 orbifold with orbifold action 1
5 [1,1,3]. The

vertices for the cone are given by

v1 = (1, 0, 0), v2 = (−1 − 3, 5), v3 = (0, 1, 0) . (B.7)

Using the same method outlined before one can check that this is indeed the C3/Z5 orbifold.

B.2.1 The resolution of C3/Z5

Following the process for resolution as described in the C3/Z3 example one finds that one

has to insert two vertices

v4 = (0,−1, 2), v5 = (0, 0, 1), see figure 2 (B.8)

inside the cone to get the desired condition of unit determinant for the individual sub-

cones. Now as before construct the dual fans for each of the cones, and as before we have

the following inequalities.

Cone 1: c ≥ 0, a ≥ 0 and b ≥ 0 . (B.9)

The corresponding vertices are given by

v′1 = (1, 0, 0), v′2 = (0, 1, 0), v′3 = (0, 0, 1) . (B.10)
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The space is given by C[X,Y,Z]

Cone 2: c ≥ 0, 5c ≥ 3b + a and b ≥ 0 . (B.11)

The corresponding vertices are given by

v′1 = (−1, 0, 0), v′2 = (−3, 1, 0), v′3 = (5, 0, 1) . (B.12)

The space is given by C[X−1,X−3Y,X5Z].

Cone 3: c ≥ 0, 2c ≥ b and 5c ≥ 3b + a . (B.13)

The corresponding vertices are given by

v′1 = (3,−1, 0), v′2 = (−1, 2, 1), v′3 = (−1, 0, 0) . (B.14)

The space is given by C[X3Y −1, Y 2ZX−1,X−1].

Cone 4: 2c ≥ b, a ≥ 0 and 5c ≥ 3b + a . (B.15)

The corresponding vertices are given by

v′1 = (0, 5, 3), v′2 = (1,−2,−1), v′3 = (0,−2,−1) . (B.16)

The space is given by C[Y 5Z3,XY −2Z−1, Y −2Z−1].

Cone 5: c ≥ 0, 2c ≥ b and a ≥ 0 . (B.17)

The corresponding vertices are given by

v′1 = (0,−1, 0), v′2 = (1, 0, 0), v′3 = (0, 2, 1) . (B.18)

The space is given by C[Y −1,X, Y 2Z].

Now the divisor D4 corresponding to v4 is given by D4 ≡ Z2/Y = 0. To find out

what space this divisor corresponds to one has to analyse all the cones of which this is a

common point. These will be the coordinate patches of the corresponding space. Since

there are three cones surrounding this point, the corresponding space should be a P2. This

can be checked rigorously, exactly as before. To do this we substitute D4 = 0 in the cones

(3), (4) and (5). Take Y 2Z ≡ A and D4 = 0. We then get for the corresponding patches,

C[AX−1,X−1], C[A,X] and C[XA−1, A−1] respectively. As noted earlier these are the

patches of P2, so

D4 ≡ P2 . (B.19)

To find the space corresponding to D5 given by Z = 0 we similarly substitute Z = 0 in the

patches (1),(2),(3),(5). We then get for the corresponding patches:

(1) C[X,Y ], (2) C[X−1,X−3Y ], (3) C[X3Y −1,X−1], (5) C[Y −1,X] (B.20)
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These are the coordinate patches associated with the space F3. In general the space Fa has

the following four coordinate patches [15].

(X−1,XaY ), (X,Y ), (X−1,X−aY −1), (X,Y −1)

So we see that

D5 ≡ F3 . (B.21)

The general rule for computing the triple intersections is that the triple intersections

for any three distinct divisors which span a cone is 1 and the intersection of those distinct

divisors that don’t span a cone, vanish. For instance for the C3/Z5 orbifold, the vectors

v1, v2, v4 span the cone labelled 4. So we have D1 · D4 · D2 = 1. On the other hand since

v1, v2, v5 do not span a cone, we have D1 ·D5 ·D2 = 0, and so on. These triple intersections,

involving the distinct divisors, can then be used to obtain other triple intersections, which

involve self intersections of divisors. This is done by using the linear equivalence relations

between the divisors to express these in terms of the ones involving distinct ones.

C. The R-sheaves for the Higgs branes

We will provide some details that go into computing the Chern character for the R-sheaves.7

The general sequence we will be using is of the form,

0 → OX(−Di − Dj) → OX(−Dj) → i∗ (ODi
(−Dj)) → 0 (C.1)

where i : Di → X. From the above sequence we obtain

ch [i∗ (ODi
(−Dj))] = ch [OX(−Dj)] − ch [OX(−Di − Dj)] (C.2)

The R-sheaves for the Higgs branes of the C3/Z3 orbifold

0 → OX(−D1) → OX → i∗ (OD1
) → 0 (C.3)

Using the above sequence can show that,

ch [i∗ (OD1
)] = ch

[

R0
2

]

, (C.4)

up to the class of a point, which was undetermined in the main text. Similarly for the

other R-sheaf, consider the following sequence

0 → OX(−2D1) → OX(−D1) → i∗ (OD1
(−D1)) → 0 (C.5)

From this sequence one can compute the Chern character of OD1
(−D1) and again up to

the class of a point,

ch [i∗ (OD1
(−D1))] = ch

[

R1
2

]

, (C.6)

7Here we are treating both compact and non-compact divisors on par and we will do so throughout this

section. A detailed technical justification of this is beyond the scope of this paper.
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The R-sheaves for the Higgs branes of the C3/Z5 orbifold

One can carry out a similar exercise for the C3/Z5 orbifold. We will give below the sequences

used to show that the Chern characters of the objects match with the Chern characters of

the R-sheaves.

Type I. The sequences of interest are,

0 → OX(−D1) → OX → i∗ (OD1
) → 0

0 → OX(−2D1) → OX(−D1) → i∗ (OD1
(−D1)) → 0

0 → OX(−D1 − D3) → OX(−D3) → i∗ (OD1
(−D3)) → 0 (C.7)

Using these sequences one can show that up to the class of a point,

ch [i∗ (OD1
)] = ch

[

R
(0)
2

]

,

ch [i∗ (OD1
(−D1))] = ch

[

R
(1)
2

]

,

ch [i∗ (OD1
(−D3))] = ch

[

R
(3)
2

]

. (C.8)

Type II. The sequences of interest are,

0 → OX(−D3) → OX → j∗ (OD3
) → 0

0 → OX(−D1 − D3) → OX(−D1) → j∗ (OD3
(−D1) → 0 (C.9)

From the above sequences, one gets,

ch [j∗ (OD3
)] = ch

[

R
(0)
2

]

,

ch [j∗ (OD3
(−D1)] = ch

[

R
(1)
2

]

.

D. The Coulomb branes

In this appendix we will write down some representative objects for the Coulomb branes.

These can be derived in the same way as the duals for the Higgs branes using appropriate

sequences, which we don’t write down. We write them down as sum of terms each corre-

sponding to objects with support on both the non-compact divisor and on some compact

divisor. We emphasise that these are not unique. The key point is that unlike the duals

for the Higgs branes, these cannot be written as purely line bundles supported on the

non-compact divisor.

Coulomb brane for the C3/Z3 orbifold

R3
(2) = i∗ [OD1

(D1)] + j∗ [OD4
(−2D1)] . (D.1)

Coulomb branes for the C3/Z5 orbifold

Type I.

R2
(2) = i∗ [OD1

(−2D1)] + j∗ [OD4
(D4)] , (D.2)

R4
(2) = i∗ [OD1

(D1)] + j∗ [OD4
(−D1)] + k∗ [OD5

(D1 + D5)] . (D.3)
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Type II.

R2
(2) = l∗ [OD3

(D3)] + j∗ [OD4
(D4)] + k∗ [OD5

(−2D1)] , (D.4)

R3
(2) = l∗ [OD3

(−D3)] + k∗ [OD5
(D5 − D1)] ,

R4
(2) = l∗ [OD3

(−D3 − D1)] + k∗ [OD5
(D5 − 2D1)] . (D.5)

Here i∗, j∗, k∗ and l∗ are the push-forwards for the appropriate divisors.
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